Clustering Massive Text Data Streams by Semantic Smoothing Model

نویسندگان

  • Yubao Liu
  • Jiarong Cai
  • Jian Yin
  • Ada Wai-Chee Fu
چکیده

Clustering text data streams is an important issue in data mining community and has a number of applications such as news group filtering, text crawling, document organization and topic detection and tracing etc. However, most methods are similarity-based approaches and use the TF*IDF scheme to represent the semantics of text data and often lead to poor clustering quality. In this paper, we firstly give an improved semantic smoothing model for text data stream environment. Then we use the improved semantic model to improve the clustering quality and present an online clustering algorithm for clustering massive text data streams. In our algorithm, a new cluster statistics structure, cluster profile, is presented in which the semantics of text data streams are captured. We also present the experimental results illustrating the effectiveness of our technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Chapter 9 MINING TEXT STREAMS

The large amount of text data which are continuously produced over time in a variety of large scale applications such as social networks results in massive streams of data. Typically massive text streams are created by very large scale interactions of individuals, or by structured creations of particular kinds of content by dedicated organizations. An example in the latter category would be the...

متن کامل

A Framework for Clustering Massive Text and Categorical Data Streams

Many applications such as news group filtering, text crawling, and document organization require real time clustering and segmentation of text data records. The categorical data stream clustering problem also has a number of applications to the problems of customer segmentation and real time trend analysis. We will present an online approach for clustering massive text and categorical data stre...

متن کامل

A Dynamic and Semantically-Aware Technique for Document Clustering in Biomedical Literature

As an unsupervised learning process, document clustering has been used to improve information retrieval performance by grouping similar documents and to help text mining approaches by providing a high-quality input for them. In this paper, the authors propose a novel hybrid clustering technique that incorporates semantic smoothing of document models into a neural network framework. Recently, it...

متن کامل

Semantic smoothing for text clustering

In this paper we present a new semantic smoothing vector space kernel (S-VSM) for text documents clustering. In the suggested approach semantic relatedness between words is used to smooth the similarity and the representation of text documents. The basic hypothesis examined is that considering semantic relatedness between two text documents may improve the performance of the text document clust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007